

\$32.00C

KYOCERA Timing Devices Resonators Crystals Oscillators

Table of Contents

CERAMIC RESONATORS

General Description	2-7
KBR -Y Series - Surface Mountable — fo: 380 to 1050 kHz	8-9
KBR -B, -BK, -F Series — fo: 190 to 1050 kHz	10-11
KBR Special Series	12
PBRC -A Series - Surface Mountable — fo: 2.00 to 8.00 MHz	13
PBRC -B/D Series - Surface Mountable — fo: 2.00 to 36.00 MHz	14
Tape & Reel Packaging, PBRC-A/B/D	15
SSR-B Series	
KBR -M, -MS, -MSA, -MSB Series — fo: 2.00 to 13.00 MHz	17
KBR -MY, MSA Series — f _o : 13.01 to 36.00 MHz	18
KBR -MKC, -MKD, -MKS Series - fo: 3.45 to 8.00 MHz and 16.00 to 36.00 M	1Hz 19
Tape & Reel Packaging, MHz Ceramic Resonators	20

SURFACE ACOUSTIC WAVE RESONATORS

General Description	
PAR Series	
KAR -CS, -CT, -CB, -CD, -CK Series — fo: 46 to 315 MHz	
KAR Series Data	

QUARTZ CRYSTALS

KSX Series	
KT Series	

CLOCK OSCILLATORS

General Description	
K50 Series — f _o : 8 to 68 MHz	
KT11 Series	
KT12 Series	
KT14 Series	
VCO Series	
KXO-01 Series — f ₀ : 8.0 to 50 MHz	
KXO-HC/KHO-HC Series — fo: 1.0 to 80 MHz	
386 Series	

Broduct	Turne	Oscillating Frequency								Applications				
Product Name		Туре	1KHz	10KHz	100	KHz 1N	1Hz 10N	1Hz	100N	1Hz 10	SHz	10GHz	z	Applicatione
Quartz Crystal		Leaded			 		12.0M		22.0M				Т	Felecommunication
		SMD					12.0M		22.0M			 	Т	Felecommunication
	KHz Band	Leaded			~ 680k ~ 815k		960k ~ 1	050k				- 		Micro Processor
Ceramic Resonator MHz Band	Kiiz Ballu	SMD		440)k ~ 430)k ~ 525)k ~ 655	k 🗌 🛛	795k ~ 81 960k ~ 10							Micro Processor
		Leaded				1.92N	1	1] 40.0N	1		 		Micro Processor
	WITZ Dand	SMD				2.0M		1	60	0.0M				Micro Processor
Saw Resonator		Leaded			 		 	46	M	47	9 M			RF Modulator Keyless Entry
		SMD			 		- 		300N	47	9M			RF Modulator Keyless Entry
		Leaded				500k	1	1		72M		 		Micro Processor
Clock Oscillator		SMD					8.0M [1		68M				Micro Processor
	KT 11,12,14 Series	SMD					12.0M		20.0M				Г	Felecommunication

QUARTZ CRYSTALS, RESONATORS and CLOCK OSCILLATORS

VOLTAGE CONTROLLED OSCILLATORS

	Frequency	500MHz	1G	Hz	1.5GHz	2G	Hz		Applicati	ion
		VK Series			1		VKS	eries	Applicati Availabil	ity
			EK Series					EK Serie	5	
			Y	'K Series					YK Series]
Application	System				RK	Series				RK Series
	JPN				1					
	СТІ СТІ+									
Cordless										
Phone	PHS									•
	DECT				i					•
	CT2+									•
Low Power	Transceiver LAN Remote Controller Control									
Transmitter	Wireless Microphone				1					
	AMPS									
	TACS									
	NMT									
	NTT									
Cellular Phone	PDC									
rnone	GSM									
	GOM									
	US digital									
	PCN									
Satellite	GPS									
Satemite	GFS									

Part Series	Frequency Range	Type Lead Configuration				
KBR-Y	380 to 1050 kHz	SMT	Gull Wing Surface Mount			
KBR-B	190 to 680 kHz	Std Q _m	Standard, Single-in-line, Formed Leads			
KBR-BK	380 to 655 kHz	Std Q _m	Standard, Single-in-line			
KBR-F	795 to 1050 kHz	High Q _m	Standard, Single-in-line			
Specials	Per application	_	_			

kHz BAND CERAMIC RESONATORS

MHz BAND CERAMIC RESONATORS

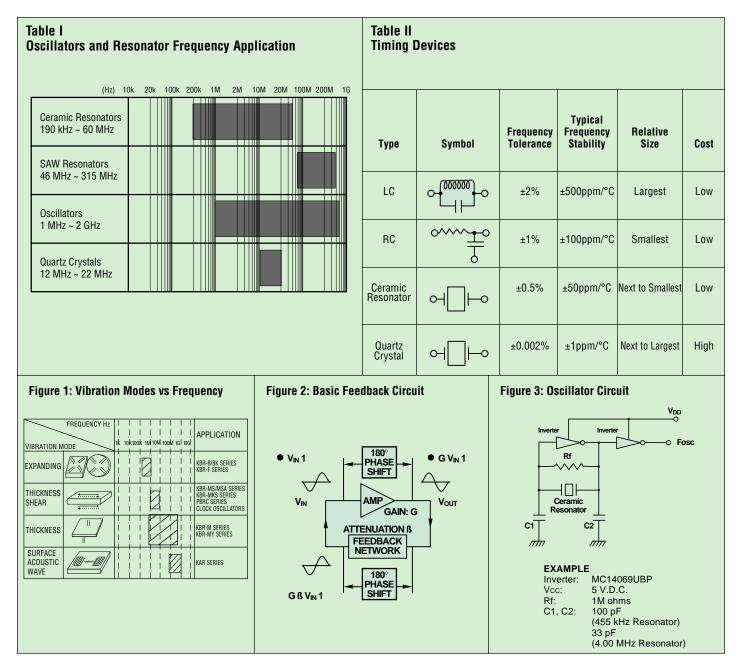
Part Series	Frequency Range*	Туре				
PBRC-A	2.00 to 8.00 MHz	SMT without Capacitor				
PBRC-B/D	2.00 to 36.00 MHz	SMT with Built-in Capacitor				
SSR-B	16.00 to 60.00 MHz	Ultraminiature SMT with Built-in Capacitor				
KBR-MS	2.00 to 3.57 MHz	Standard				
KBR-MSA	MSA 3.58 to 8.00 MHz Water resistant					
KBR-MSB	3.58 to 6.00 MHz	"No-Clean" Process only				
KBR-M	6.01 to 13.00 MHz	Standard				
KBR-MY	13.01 to 16.00 MHz	CMOS				
KBR-MSA	16.00 to 36.00 MHz	High Frequency Standard				
KBR-MKS	3.58 to 8.00 MHz	Built-in Capacitor –Low Profile				
KBR-MKC	3.58 to 8.00 MHz	Built-in Capacitor - "No-Clean" Process only				
KBR-MKD	3.58 to 8.00 MHz, 16.00 to 36 MHz	Built-in Capacitor-Water resistant				

*For additional frequencies consult factory.

GENERAL DESCRIPTION

AVX/Kyocera produces a broad range of high quality ceramic resonators covering both the kilohertz and megahertz frequency ranges. The high quality and extensive coverage of this product line allows optimum design of almost any oscillating circuit.

Ceramic resonators stand between quartz crystal oscillators and LC/RC oscillators in regard to accuracy but are considerably smaller, require no adjustments, have improved start-up times, and are low in cost.

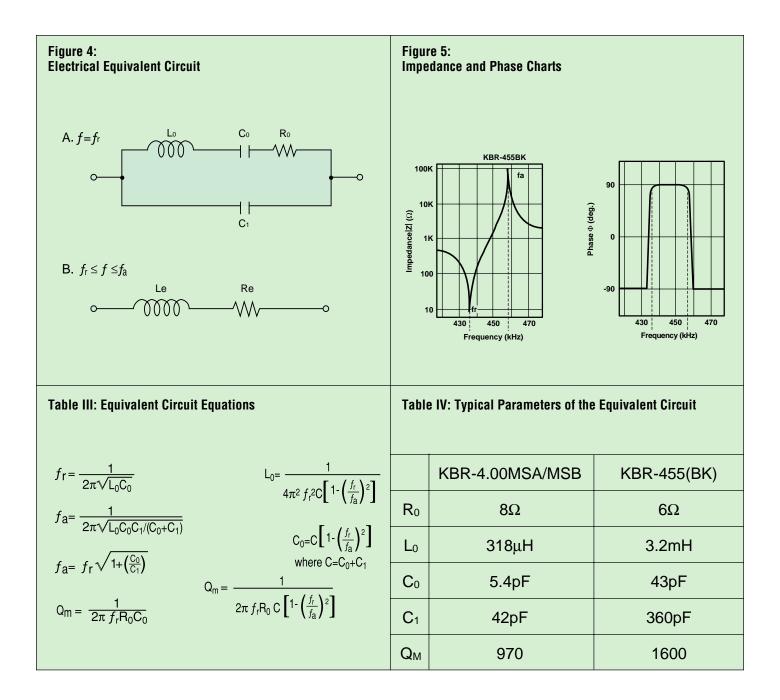

Their oscillation is dependent upon mechanical resonance associated with their piezoelectric crystalline structure. These materials (usually barium titanate or leadzirconium titanate, PZT) have large dipole movement which causes the distortion or growth of the crystal by an applied

electric field. The resonance frequency depends on the vibration mode as shown in Figure 1.

A basic feedback circuit is shown in Figure 2. It consists of an amplifier with a 180° phase shift and attenuator. A negative polar output (volt) is obtained with an amplitude equal to the gain of the amplifier times the input voltage (G \times V_{IN}). After the signal goes through the feedback network with an attenuation ratio of ß, a negative polar wave equal to $\mathfrak{G}\times(\mathsf{G}\times\mathsf{V}_{\mathsf{IN}})$ is fed back to the input. If this feedback is greater than the initial input voltage (V_{IN}), oscillation will occur. This satisfies the two conditions necessary for oscillation:

1.G × ß>1

2. Phase cycle around the loop is an integral multiple of 360°.

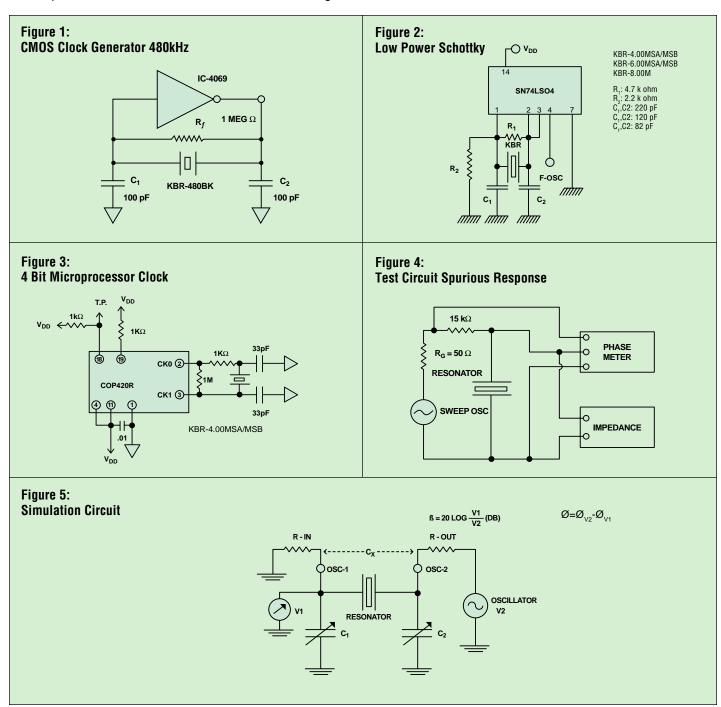

GENERAL DESCRIPTION continued

The mechanical vibration of a ceramic resonator can be represented by an equivalent electrical circuit consisting of L, C, and R's (Figure 4). The impedance and phase curves of a ceramic resonator are shown in Figure 5.

Between the resonant frequency (f_r) and the antiresonant frequency (f_a) , the ceramic resonator acts like an inductor with performance identical to a coil and a resistor (Figure 4-B). At other frequencies, it has capacitive characteristics (Figure 4-A).

The equivalent circuit parameters can be determined from the resonant and anti-resonant frequencies. These equations are shown in Table III with the equivalent circuit parameters of typical AVX/Kyocera resonators shown in Table IV.

Ceramic resonators have much lower Q_m and higher equivalent capacitances than crystal oscillators. Oscillation circuits of various I.C.'s can be either low (inverter) or high (Schmidt) gain.

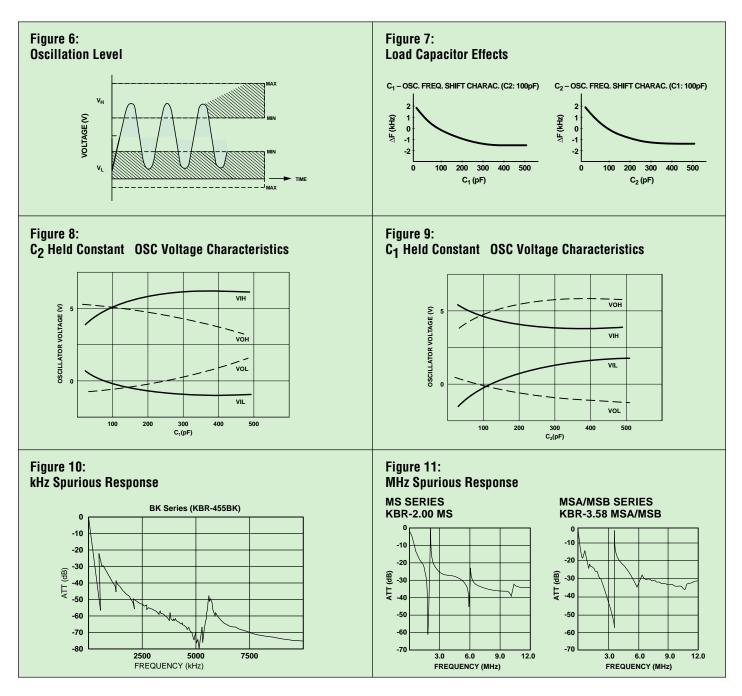


APPLICATION AND TEST CIRCUITS

required to allow oscillation to start when the power is initially applied. Its value is generally 1 M Ω in ceramic resonator circuits.

Special attention should be paid to the design of oscillator circuits, because they have a significant impact on the performance of the system. To determine proper circuit parameters, careful consideration must be given

In some circuits, a feedback resistor (R_f , Figure 1) is to each component's characteristics under normal and marginal working conditions. Recommended component values for various IC's and microprocessors are given in theAppendix "Application Circuits for Ceramic Resonators." These values should be checked in the actual operating circuit to confirm their performance over changing conditions of input voltage and temperature.


APPLICATION AND TEST CIRCUITS continued

The design of an oscillation circuit requires an accurate choice of circuit components to ensure oscillation within the specific voltage range of the IC (Figure 6). Semiconductor manufacturers' data books categorize V_H and V_L for both input and output requirements. The next stage of a design can be driven from either the IC input or output. Special attention should be paid to V_{IH} and V_{IL} or V_{OH} and V_{OL} depending upon where the next stage comes from the IC.

Oscillation frequency and amplitude depend upon the values of the external load capacitors (C_1 , C_2). These

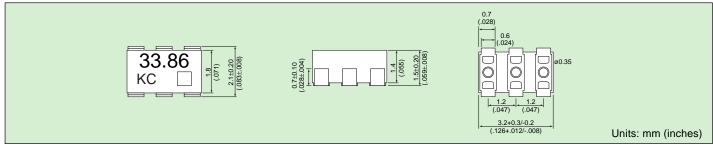
effects are illustrated in Figures 7, 8 and 9. When the feedback ratio and the input oscillation amplitude are decreased too far, the circuit becomes vulnerable to external noise and might oscillate spuriously with the external noise.

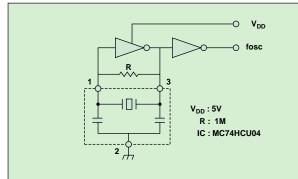
There are some cases when a high gain IC or one with a wide non-linear range will give abnormal oscillation from sub-vibration of the resonator. This can be prevented by adding a damping resistor to decrease the feedback ratio or by increasing the load capacitance values. The spurious characteristics of typical AVX/Kyocera kHz and MHz resonators are shown in Figures 10 and 11.

FEATURES

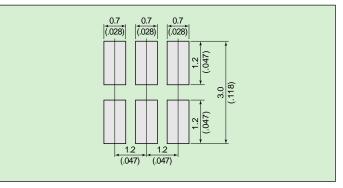
- 1) World's smallest (2.1x3.2x1.5 mm)
- 2) High density mounting possible
- 3) Wide frequency range in same case size
- 4) 2000 pieces per reel
- 5) Sold in increments of 2000 pieces

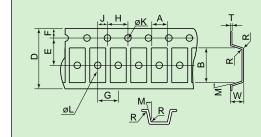
HOW TO ORDER SSR 33.86 B R


- $\boxed{1} \quad \boxed{2} \quad \boxed{3} \quad \boxed{4}$
- 1 Type: (Super Small Resonator)
- 2 Oscillating frequency
- (3) Resonator type: B = With capacitor
- (4) Packaging: R = Tape and reel


SPECIFICATIONS

Frequency Range	Frequency Tolerance	Resonant Impedance	Temperature Stability (-20~80°C)	IC	Popular Frequencies
16~60MHz	±0.5%	100 max.	±0.3%	MC74HCU04 (MOTOROLA)	16, 25, 27, 29, 33.86, 40


DIMENSIONS


TEST CIRCUIT

RECOMMENDED LAND PATTERN

PACKAGING: TAPE and REEL

Symbol	Α	В	D	E	F	G	Н
Dimension	2.4	3.6	8.0	3.5	1.75	4.0	4.0
Symbol	J	K	L	М	R	W	T
Dimension	2.0	1.5	1.1	5° max.	0.3 max.	1.8	8.0

Unit: mm (inches)

