SHOULDER

规格书编号 SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客户:		
PRODUCT 产品:	SAW RESONATOR	
MODEL NO 型 号:	HDR360M-D11	
PREPARED 编 制:	CHECKED 审 核:	
APPROVED 批 准:	D A T E 日 期:	2012-12-26

客户确认 CUSTOMER RECEIVED:				
	[[
审核 CHECKED	批准 APPROVED	日期 DATE		

无锡市好达电子有限公司 Shoulder Electronics Limited

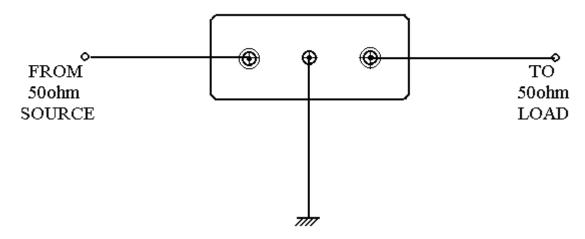
HDR360M-D11

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

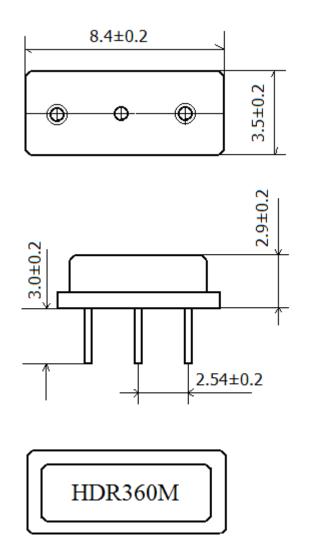
1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	30V
AC Voltage Vpp	10V50Hz/60Hz
Operation temperature	-40°℃ to +85°℃
Storage temperature	-45°C to +85°C
RF Power Dissipation	0dBm

2.2Electronic Characteristics


Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	359.925	360.000	360.075
Insertion Loss		dB		1.5	2.2
Quality Factor Unload Q			6000	10000	
50Ω Loaded Q			1000	2000	
Temperature	Turnover Temperature	°C	10	25	40
Stability	Freq.temp.Coefficient	ppm/°C2		0.032	
Frequency Aging		ppm/yr		$<\pm 10$	
DC. Insulation Resistance		MΩ	1.0		
RF Equivalent RLC Model	Motional Resistance R1	Ω		22	26
	Motional Inductance L1	μH		118.43	
	Motional Capacitance C1	fF		1.6503	
Transducer Static Capacitance		pF		2.2	

3. TEST CIRCUIT

4. **DIMENSION**

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall

meet the specifications in 2.2.

5-5 Solderability

Subject the device terminals into the solder bath at 245° C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

6. REMARK

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.