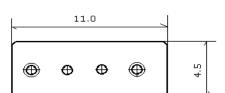
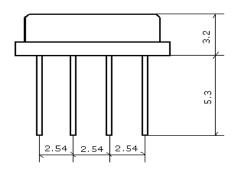
Approved by:

Checked by:

Issued by:

SPECIFICATION


MODEL: HD F882C(F11)



WUXI HAODA ELECTRONICS COMPANY LIMITED

1. Package Dimension

(F-11)

Unit:mm

NO Function 1 Input 2 Ground 3 Ground 4 Output

2. Marking

HD F882C

1.Color: Black or Blue

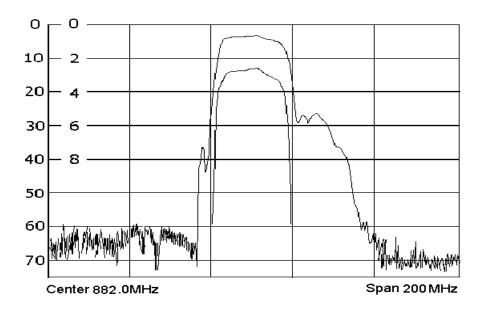
2.882: Center Frequency(MHz)

3.Performance

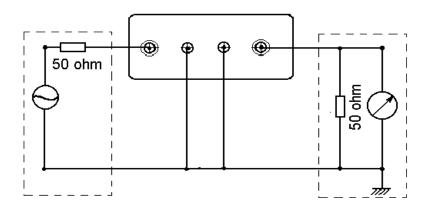
3.1 Application

Low-Loss SAW Filter of cordless system.

Center Frequency:882MHz


3.2 Maximum Rating

Operation Temperature Range	-20°C to +50°C
Storage Temperature Range	-40°C to +85°C
DC. Permissive Voltage	0 V DC. max.
Maximum Input Power	5dBm


3.3 Electronic Characteristics

Item	Specification
Center Frequency(fo)	882.0MHz
Insertion Loss	
Fo±4 MHz	5.0 dB max
1.)Fo-36.0 MHz	50 dB min
2.)Fo-200~36 MHz	40 dB min
3.)Fo+100~300 MHz	50 dB min
Ripple deviation (Fo±4MHz)(dB)	2.0max
Input/output Impedance(Nominal)	50 Ω
Operating Temperature Range	0°C to +50°C

3.4 Frequency Characteristics

3.5 Test Circuit

4. ENVIRONMENTAL CHARACTERISTICS

4-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the filter into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

4-2 Low temperature exposure

Subject the device to -20° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

4-3 Temperature cycling

Subject the device to a low temperature of -40°C for 30 minutes. Following by a high temperature of $+80^{\circ}\text{C}$ for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in table 1.

4-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in table 1.

4-5 Solderability

Subject the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in table 1.

4-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times, the device shall fulfill the specifications in table 1.

4-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in table 1.

4-8 Lead fatigue

4-8-1 Pulling test

Weight along with the direction of lead without an shock 1kg. The device shall satisfy all the initial Characteristics.

4-8-2 Bending test

Lead shall be subject to withstand against 90 °C bending with 450g weight in the direction of thickness. This operation shall be done toward both direction. The device shall show no evidence of damage and shall

5. REMARK

5.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

5.3 Soldering

Only leads of component may be soldered . Please avoid soldering another part of component.