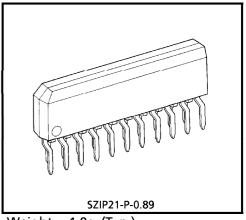
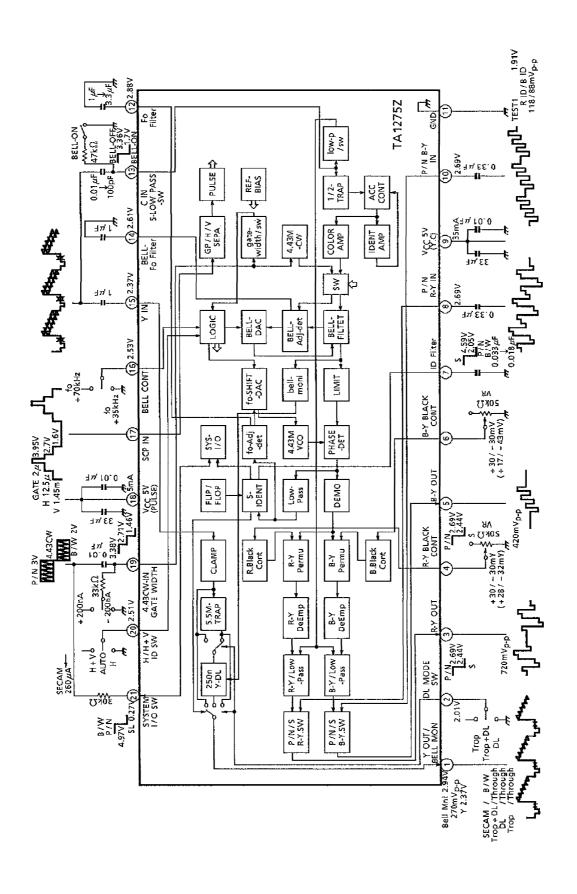
TENTATIVE

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1275Z


SECAM DEMODULATOR PROCESSOR

TA1275Z is the SECAM demodulation IC, which accomplishes a multicolor system with TB1231 series.


This IC requires very few external parts.

FEATURES

- Working with TB1231 series, which is PAL/NTSC PIF/VIF/ VIDEO/CHROMA/DEF processor.
- Built-in Bell filter
- Built-in FM demodulator with PLL circuit for color demodulation and SECAM identification
- DC voltage offset of demodulated signal adjuster
- Input terminals for external R-Y/B-Y signals

Weight: 1.0g (Typ.)

TA1275Z - 2

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CCmax}	8	V
Signal Voltage at Each Input Pin	e _{inmax}	5	V _{p-p}
Power Consumption	P _D (Note)	780	mW
Power Consumption Reduction Ratio	1/Qja	6.3	mW/°C
Operating Temperature	T _{opr}	- 20∼6 5	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note) Refer to the figure below.



Fig. Power consumption reduction against higher temperature.

RECOMMENDED CONDITION IN USE

CHARACTERISTIC	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	pin 9, 18	4.5	5.0	5.5	_
Y Input Signal Level	white: 100%, including sync.	0.9	1.0	1.1	V _{p-p}
Color Difference Input Level	Burst level	270	300	330	mV _{p-p}
	G level	3.25	4.0	5.0	
SCP Input Level	H level	1.95	2.1	2.6	V
	V level	1.1	1.25	1.4	

ELECTRICAL CHARACTERISTICS

(YC V_{CC} /PULSE $V_{CC} = 9V$, $Ta = 25^{\circ}C$, Unless otherwise specified) Current consumption

PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
V _{CC} (Y / C)	l _{CC1}		30.8	36.3	44.4	m ^
V _{CC} (PULSE)	I _{CC2}	_	8.3	9.8	11.9	mA

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
1	Y OUT	V ₁		2.30	2.50	2.70	
2	MODE SW	V ₂	_	1.80	2.00	2.20	
3	R-Y OUT	V ₃	_	2.30	2.60	2.90	
4	R-Y BLACK CONTROL	V ₄	_	2.30	2.50	2.70	
5	B-Y OUT	V ₅	_	2.30	2.60	2.90	
6	B-Y BLACK CONTROL	V ₆		2.30	2.50	2.70	
7	S-ID FILTER (killer OFF)	V ₇	_	4.25	4.55	4.85	
8	EXT. R-Y IN	V ₈	_	2.50	2.70	2.90	
10	EXT. B-Y IN	V ₁₀	_	2.50	2.70	2.90	V
12	F0-ADJ. FILTER	V ₁₂		2.55	3.00	3.45	
13	C IN	V ₁₃		3.20	3.40	3.60	
14	BELL ADJ. FILTER	V ₁₄		2.35	2.65	2.95	
15	YIN	V ₁₅		2.10	2.35	2.60	
16	BELL CONTROL	V ₁₆	_	2.30	2.50	2.70	
19	4.43MHz CW-IN	V ₁₉		2.50	2.75	3.00	
20	ID SW	V ₂₀	_	2.30	2.50	2.70	
21	SECAM ID I/O (killer OFF)	V ₂₁		0.00	0.20	0.60	

(Note) Pin 12, 13, 16, 17 and 18 are weak against static electricity and surge impulse. Please take confer measure to meet, if necessary.

INPUT/OUTPUT SIGNAL I I (2) (9) **(9**) (2) ۷۲.۲ INTERFACE CIRCUIT ı ≥K℧ ∀#0S -₩ i≥kŋ ۸٤ 12K℧ -₩ A≒021 ιżκυ ∀# 0S 5 2 2 3 4 5 5 5 5 7 -₩-2kუ Ω001 --**₩**--_____ აიცე 0 by switching pin #13 for testing. controlled by the switch to V_{CC} : 5.5MHz trap signal. Standard output the Y processing mode. The pin for controlling level is 1.0V_{p-p}. The 5.5MHz trap filter and monitored on this pin trap + D. L. The output pin for Y The output signal of the bell filter can be delay line on the Y signal processing is : 5.5MHz FUNCTION to GND : DL on :pin #2. open TERMINAL INTERFACE PIN NAME MODE SW Y OUT PIN No.

TA1275Z - 6

TA1275Z-8

9

TA1275Z - 9

TA1275Z - 10

TA1275Z - 11

TA1275Z - 12

13

TA1275Z-13

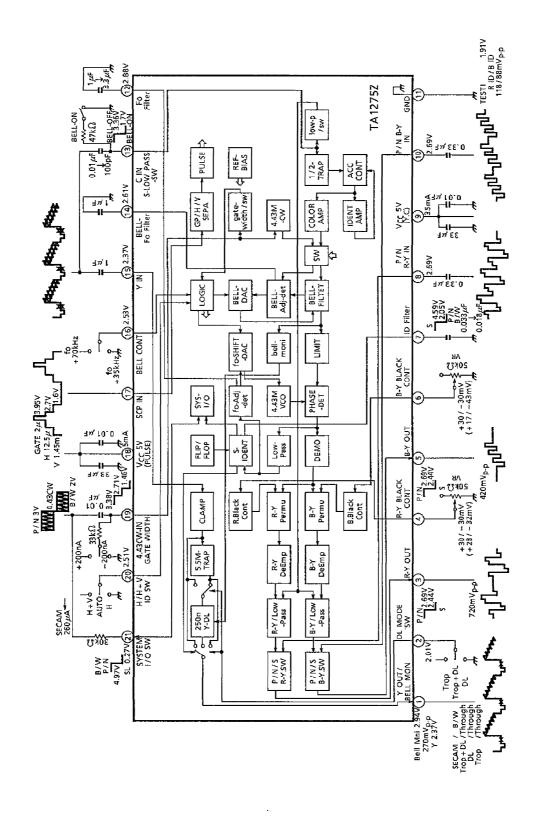
TA12752 - 14

AC CHARACTERISTIC (Unless otherwise specified, $V_{CC} = 5V$ (9 & 18pin), $Ta = 25^{\circ}C$)

	HARACTERISTIC (Offices Otherw		TEST			RATING	ı	
No.	ITEM	SYMBOL	CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
1	Bell Monitor Output Amplitude	ebmo	_	(Note 1)	120	190	310	mV _(p-p)
2	Bell/Filter f ₀	f _{0B-C}	_	(Note 2)	- 23	0	23	kHz
3	Bell/Filter f ₀ Variable Range	f _{0B-H} f _{0B-L}	_	(Note 3)	+ 40 + 10	+ 70 + 35	+ 100 + 60	kHz kHz
4	Bell/Filter fo VCC Drift	∆f0BELV	_	(Note 4)	- 25	0	+ 25	kHz
5	Bell/Filter f ₀ Thermal Drift	∆f0BELT	_	(Note 5)	- 30	0	+ 30	kHz
6	Bell/Filter Q	Q _{BEL}	_	(Note 6)	14	16	18	_
7	Color Difference Output Amplitude	V _{RS} V _{BS}	_	(Note 7)	0.39 0.5	0.56 0.7	0.73 0.99	V _(p-p) V _(p-p)
8	Color Difference Relative Amplitude	R/B-S	_	(Note 8)	1.24	1.35	1.52	_
9	Color Difference S/N	SNB-S SNR-S	_	(Note 9)	- 40 - 40	- 46 - 46	_	dB dB
10	Color Difference Output V _{CC} Drift	∆V _{BVH} ∆V _{BVL}	_	(Note 10)	-8 -8	0	+8	% %
11	Color Difference Output Thermal Drift	ΔV _{BTH} ΔV _{BTL}	_	(Note 11)	-8 -8	0	+8	%
12	Linearity	LinB LinR	_	(Note 12)	93 93	100 100	107 107	% %
13	Rising Time	t _{rR}	_	(Note 13)	_	1.3 1.3	2.0 2.0	μs μs
14	Demodulation Hold Range	H _{RL} H _{BH}	_	(Note 14)	— 4.75	3.5 5.2	3.9	MHz MHz
15	Demodulation Capture Range	C _{RL} C _{BH}	_	(Note 15)	— 4.75	3.5 5.2	3.9	MHz MHz
16	Killer Operation Input Level	eSC eSC	_	(Note 16)	0.5 0.5	1	2 2	mV _(p-p) mV _(p-p)
17	Carrier Remains on Demodulated Output	C _{LRS}	_	(Note 17)		3	10 10	mV _(p-p)
18	Black Level Offset	E _{rR} E _{rB}	_	(Note 18)	- 30 - 30	0	+ 30 + 30	mV mV
19	ID Voltage	V _{21color} V _{21B} /W	_	(Note 19)	0.12 4.4	0.2 4.8	0.6 5	V V
20	ID Current	l _{21color} l _{21B/W}	_	(Note 20)	208 —	290 0	385 10	μ Α μ Α
21	System SW Threshold Level	V _{21P} /N V _{21S}	_	(Note 21)	2.3 2.3	2.5 2.5	2.7 2.7	V V
22	Color Difference Output DC Level	V _{3P} /N V _{5P} /N V _{3S} V _{5S}	_	(Note 22)	2.3 2.3 2.2 2.2	2.6 2.6 2.5 2.5	2.9 2.9 2.8 2.8	V V V

N.	ITCNA	CVMDOL	TEST			RATING	ı	LINIT
No.	ITEM	SYMBOL	CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		⊿E _{rR +}			27	30	33	mV
23	R-Y/B-Y Color Black Level	⊿E _{rR} _	l	(Note 23)	- 33	- 30	– 27	mV
23	Control Characteristics	⊿E _{rB+}	_	(14016-25)	27	30	33	mV
		⊿E _{rB} –			- 33	- 30	– 27	mV
24	Ext. Color Difference Gain	G _{EXTR}		(Note 24)	8.0	1.0	1.2	_
	Ext. Color Difference dalli	G _{EXTB}		(Note 24)	8.0	1.0	1.2	_
25	4.43MHz CW Min. Input Level	V _{CW}	_	(Note 25)	200	_	_	mV _(p-p)
	Gate Pulse Width Variable	W _{GPVCC}			1.7	1.8	1.9	μ s
26	Range	W _{GP}	—	(Note 26)	1.9	2.0	2.1	μ s
	Kange	W _{GPGND}			2.1	2.2	2.3	μ s
27	Y DL Characteristics (at 3MHz)	tYDL	_	(Note 27)	180	250	360	_
28	Y Trap Characteristics	f ₀ Y5.5		(Note 28)	4.8	5.5	6.5	MHz
20	Trap Characteristics	Gat fo	_	(Note 28)	20	35	_	dB
29	V Innut Dynamic Range	DRYS		(Note 20)	1.2	1.5	1.8	V _(p-p)
29	Y Input Dynamic Range	DRYBW	_	(Note 29)	1.2	1.5	1.8	V _(p-p)
30	Y Gain	GYS		(Note 20)	0.8	1.0	1.2	_
اعا	I Gaiii	GYBW	_	(Note 30)	0.8	1.0	1.2	_

TEST CONDITION (Unless otherwise specified, $V_{CC} = 5V$ (9 & 18pin), $Ta = 25^{\circ}C$)


NOTE	ITEM	TEST CONDITION
1	Bell Monitor Output Amplitude	 (1): Input a 75% color bar signal (200mV_{p-p} at R ID) into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Measure R-Y ID amplitude at Pin 1, that is "ebmo".
2	Bell/Filter f ₀	 (1): Input a 20mV_{p-p} sine wave whose frequency is sweep into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Keep pin 16 opened. (4): Measure the frequency at which Pin 1 output is the biggest, that is "f_{0BEL}". (5): Calculate: "f_{0B-C}" = f_{0BEL} - 4,286 [kHz].
3	Bell/Filter fo Variable Range	 (1): Input a 20mV_{p-p} sine wave whose frequency is sweep into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Measure the frequency at which Pin 1 output is the biggest when V_{CC} is 5.5V/4.5V, that is f_{0BEL5.5}/ f_{0BEL4.5}. (4): Calculate: "f_{0B-H}" = f_{0BELH} - 4,286 [kHz]. "f_{0B-L}" = f_{0BELL} - 4,286 [kHz].
4	Bell/Filter f ₀ V _{CC} Drift	 (1): Input a 20mV_{p-p} sine wave whose frequency is sweep into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Pin 16 is opened. (4): Measure the frequency at which Pin 1 output is the biggest when V_{CC} is 5.5V/4.5V, that is f_{0BEL5.5}/f_{0BEL4.5}. (5): Calculate: "Δf_{0BELV}" = f_{0BEL5.5} - f_{0BEL4.5}
5	Bell / Filter fo Thermal Drift	 (1): Input a 20mV_{p-p} sine wave whose frequency is sweep into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Pin 16 is opened. (4): Measure the frequency at which Pin 1 output is the biggest when atmosphere is -20°C/+65°C, that is f0BEL-20/f0BEL+65. (5): Calculate: "Δf0BELT" = f0BEL-20-f0BEL+65
6	Bell/Filter Q	 (1): Input a 20mV_{p-p} sine wave whose frequency is sweep into Pin 13. (2): Connect pin 13 to GND through 47kΩ. (3): Pin 16 is opened. (4): Observe the frequency response of Pin 1 output. (5): Calculate: "Q_{BEL}" = (MAX – 3dB Band Width) / f_{0BEL}.
7	Color Difference Output Amplitude	(1): Input a 75% color bar (200mV _{p-p} at R ID) into Pin 13. (2): Measure the R-Y output amplitude at Pin 3, that is "VRS". (3): Measure the B-Y output amplitude at Pin 5, that is "VBS".

NOTE	ITEM	TEST CONDITION
8	Color Difference Relative Amplitude	Calculate: "R/B-S" = V_{RS}/V_{BS} .
9	Color Difference S/N	 (1): Input a 200mV_{p-p} non-modulated chroma signal into Pin 13. (2): Measure the amplitude of noise on Pin 3, that is n_R. (3): Measure the amplitude of noise on Pin 5, that is n_B. (4): Calculate: "SNB-S" = 20ℓog (2√2V_{BS} / n_B) "SNR-S" = 20ℓog (2√2V_{RS} / n_R)
10	Color Difference Output V _{CC} Drift	 (1) : Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2) : Measure the B-Y output amplitude at Pin 5 when V_{CC} is 5.5V / 4.5V, that is V_{BS5.5} / V_{BS4.5}. (3) : Calculate : "ΔV_{BVH}" = (V_{BS5.5} - V_{BS}) / V_{BS}* 100 [%] "ΔV_{BVL}" = (V_{BS4.5} - V_{BS}) / V_{BS}* 100 [%]
11	Color Difference Output Thermal Drift	(1) : Input a 75% color bar (200mV _{p-p} at R ID) into Pin 13. (2) : Measure the B-Y output amplitude at Pin 5 when atmosphere is −20°C / +65°C, that is VBS −20 / VBS +65. (3) : Calculate : "VBSTH" = (VBS +65 − VBS) / VBS*100 [%] "VBSTL" = (VBS −20 − VBS) / VBS*100 [%]
12	Linearity	 (1): Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2): Measure the amplitude between Black and Cyan / Red, that is V_{Cyan} / V_{Red}. (3): Measure the amplitude between Black and Yellow / Blue, that is V_{Yellow} / V_{Blue}. (4): Calculate: "LinR" = V_{Cyan} / V_{Red} LinB" = V_{Yellow} / V_{Blue}
13	Rising Time	(1): Input a 75% color bar (200mV _{p-p} at R ID) into Pin 13. (2): Measure the rising time (from 10% to 90%) between Green and Magenta at Pin 3 / Pin 5, that is "t _{rR} " / "t _{rB} ".
14	Demodulation Hold Range	(1): Input a 200mV _{p-p} , 2MHz sine wave into Pin 13. (2): Increasing the input frequency, measure the
15	Demodulation Capture Range	frequencies at which demodulated output appears at Pin 3, that is "C _{RL} ", and at which demodulates output disappears at Pin 5, that is "H _{BH} ". (3): Input a 200mV _{p-p} , 7MHz sine wave into Pin 13. (4): Decreasing the input frequency, measure the frequencies at which demodulated output appears at Pin 5, that is "C _{BH} ", and at which demodulated output disappears at Pin 3, that is "H _{RL} ".

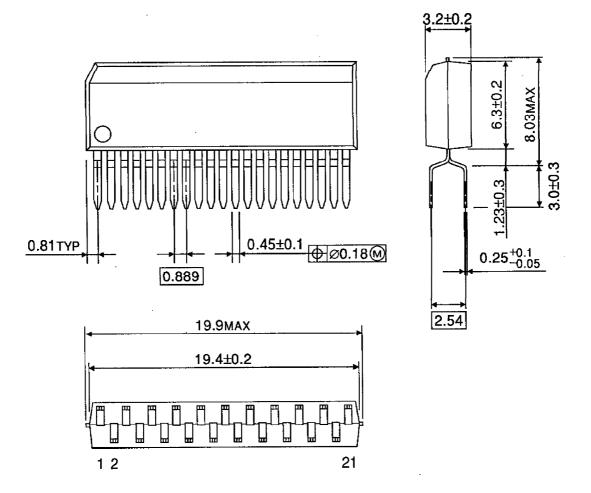
NOTE	ITEM	TEST CONDITION
16	Killer ON/OFF Level	 (1): Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2): Decreasing the input amplitude, measure the amplitude at which demodulated outputs disappear at Pin 3 and Pin 5, that is "esk". (3): Increasing the input amplitude from 0mV_{p-p}, measure the amplitude at which demodulated outputs appears at Pin 3 and Pin 5, that is "esc".
17	Carrier Remains on Demodulated Output	 (1): Input a 200mV_{p-p} non-modulated chrome signal into Pin 13. (2): Measure the amplitude of 4.25MHz signal at Pin 3, that is "CLRS". (3): Measure the amplitude of 4.406MHz signal at Pin 5, that is "CLBS".
18	Black Level Offset	 (1): Input a 200mV_{p-p} non-modulated chrome signal into Pin 13. (2): Pin 4 and Pin 6 are opened. (3): Measure the difference between picture period and blanking period at Pin 3 / Pin 5, that is "E_{rR}" / "E_{rB}".
19	ID Voltage	(1) : Input a 75% color bar (200mV _{p-p} at R ID) into Pin 13.
20	ID Current	 (2): Measure the voltage and input current of Pin 21, that are "V21color" and "I21color". (3): No input on Pin 13. (4): Measure the voltage and input current of Pin 21, that are "V21B/W" and "I21B/W".
21	System SW Threshold Level	 (1): Input a 200mV_{p-p}, 15kHz sine wave into Pin 8 and Pin 10. (2): No input Pin 13. (3): Increasing the Pin 21 voltage from 0V, measure the voltage at which 15kHz sine wave appears at Pin 3 and Pin 5, that is "V21PIN". (4): Decreasing the Pin 21 voltage from 4V, measure the voltage at which 15kHz sine wave disappears at Pin 3 and Pin 5, that is "V21S".
22	Color Difference Output DC Level	 (1): No input on Pin 13. (2): Measure the DC voltage on Pin 3 / Pin 5 when Pin 21 is 4V, that is "V3PIN" / "V5PIN". (3): Measure the DC voltage on Pin 3 / Pin 5 when Pin 21 is 0V, that is "V3S" / "V5S".
23	R-Y B-Y Black Level Control Characteristics	 (1): Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2): Measure the difference between picture period and blanking period at Pin 3 when Pin 4 is 4V/0V, that is E_{rR+} / E_{rR-}. (3): Measure the difference between picture period and blanking period at Pin 5 when Pin 6 is 4V/0V, that is E_{rB+} / E_{rB-}. (4): Calculate: "ΔE_{rR+}" = E_{rR+} - E_{rR} "ΔE_{rR-}" = E_{rR-} - E_{rR} "ΔE_{rB+}" = E_{rB+} - E_{rB} "ΔE_{rB-}" = E_{rB-} - E_{rB}

NOTE	ITEM	TEST CONDITION
24	Ext. Color Difference Gain	 (1): Input a 200mV_{p-p}, 15kHz sine wave into Pin 8 and Pin 10. (2): Supply 4V to Pin 21. (3): Measure the output amplitudes at Pin 3 and Pin 5, that are V_{EXTR} and V_{EXTB}. (4): Calculate: "G_{EXTR}" = V_{EXTR} / 200 [mV]
25	4.43MHz CW Min. Input Level	 (1): Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2): Increasing an amplitude of 4.43MHz Continuous Wave inputted into Pin 19 from 0mV_{p-p}, measure the amplitude at which color difference signals appear at Pin 3 and Pin 5, that is "V_{CW}".
26	Gate Pulse Width Variable Range	 (1): Input a 75% color bar (200mV_{p-p} at R ID) into Pin 13. (2): Connecting the Pin 7 to GND via 1kΩ, observe the gate pulse at Pin 7. (3): Measure the gate pulse widths when Pin 19 is opened, connected to V_{CC}/GND, that are "W_{GP}", "W_{GPVCC}" and "W_{GPGND}".
27	Y DL Characteristics	 (1): Connect the Pin 7 to V_{CC} via 10kΩ. (2): Connect the Pin 2 to GND. (3): Measure the delay time between Pin 15 input and Pin 1 output, that is "tyDL".
28	Y Trap Characteristics	 (1): Input a sweep signal with sync. (1V_{p-p}). (2): Connect the Pin 2 to GND. (3): Connect the Pin 2 to V_{CC}. (4): Observing the frequency response at Pin 1, measure the frequency at which the attenuation is maximum, that is "f₀Y_{5.5}" and measure the attenuation at f₀Y_{5.5}".
29	Y Input Dynamic Range	 (1): Connect the Pin 7 to V_{CC} via 10kΩ. (2): Increasing the amplitude of Y signal inputted into Pin 15, measure the amplitude at which the output signal from Pin 1 begins to be distorted, that is "DRγς". (3): Open the Pin 7. (4): Repeat (2), that is "DRγ_{BW}".
30	Y Gain	 Input a 1V_{p-p} Y signal into Pin 15. Connect the Pin 7 to V_{CC} via 10kΩ. Measure the gain between Pin 15 input and Pin 1 output, that is "Gγς". Open the Pin 7. Repeat (3), that is "Gγ_{BW}".

TEST CIRCUIT

TA1275Z - 21

21


22

2001-06-25

PACKAGE DIMENSIONS

SZIP21-P-0.89

Unit: mm

Weight: 1.0g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.