超低EMI, AB/D切换, 8W单声道音频功率放大器

概要

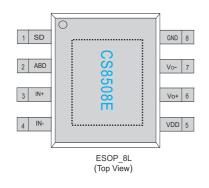
CS8508E是一款高效率,超低EMI,AB类D类模式可切换的8.0W单声道音频放大器。在电源电压为7.4V的情况下,CS8508E可以为 4Ω的负载输出 6.8W的功率。CS8508E在D类模式下,无需滤波器的PWM调制结构减少了外部元件、PCB面积和系统成本,而且也简化了设计。2.5~8.8V宽电压工作范围,D类模式高达90%的效率,快速的启动时间和纤小的封装尺寸使得CS8508E成为双节锂电池在串联的电源供电情况下最适用的音频功CS8508E的全差分架构和极高的PSRR有效地提高了CS8508E对RF噪声的抑制能力,并且省去了传统音频功放的BYPASS电容。

CS8508E内置了过流保护,短路保护和过热保护,有效的保护芯片在异常的工作条件下不被损坏。

CS8508E提供了纤小的ESOP8L封装类型供客户选择,其额定的工作温度范围为-40℃至85℃。

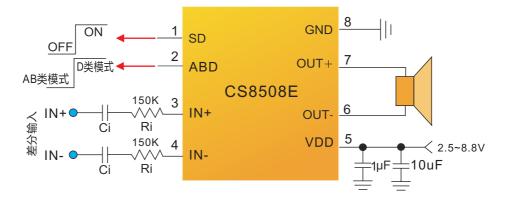
类娃

• ESOP8L

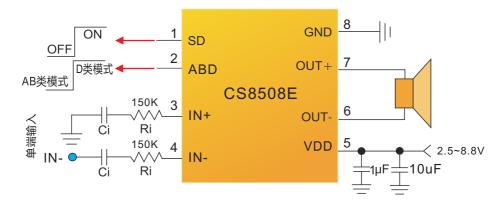

描述

- 工作电压范围:2.5~8.8V
- · 优异的"噼噗-咔嗒"(pop-noise)杂音抑制能力
- · 无需滤波的Class-D结构
- D类模式高达90%的效率
- 高的电源抑制比(PSRR): 在217Hz下为-80dB
- 快速的启动时间 (40ms)
- 低静态电流 (3mA)
- 低关断电流 (< 0.1μA)
- 过流保护,短路保护和过热保护
- · 符合Rohs标准的无铅封装]

应用:


- 多媒体音箱
- 扩音器

引脚排列以及定义


序号	符号	描述			
1	SD	掉电控制管脚 , 高电平有效			
2	ABD	AB类/D类切换选择,L选择AB类模式,H选择D类模式			
3	IN+	音频输入正端			
4	IN	音频输入负端			
5	VDD	电源			
6	VO+	正相音频输出			
7	VO-	反相音频输出			
8	GND	地			

典型应用图(差分输入应用图)

CS8508E应用电路图

典型应用图 (单端输入应用图)

CS8508E应用电路图

极限参数表1

参数	描述	数值	单位
V_{DD}	无信号输入时供电电源	9	V
V _I	输入电压	-0.3 to VDD+0.3	V
TJ	结工作温度范围	-40 to 150	°C
T _{SDR}	引脚温度(焊接10秒)	260	℃
T _{STG}	存储温度范围	-65 to 150	°C

推荐工作环境

参数	描述	数值	单位
V _{DD}	输入电压	2.5~8.8	V
TA	环境温度范围	-40~85	℃
Tj	结温范围	-40~125	°C

热效应信息

参数	描述	数值	单位
$\theta_{\sf JA}({\sf ESOP8})$	封装热阻芯片到环境热阻	40	°C/W

订购信息

产品型号	封装形式	器件标识	包装类型	数量
CS8508E	ESOP-8L	© 03535E	管装	100 units

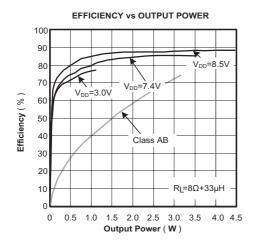
ESD 范围

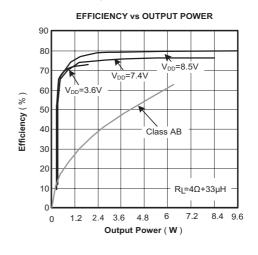
ESD 范围HBM(人体静电模式)	 ±4kV
ESD 范围 MM(机器静电模式)	 ±400V

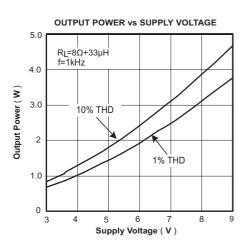
- 1. 上述参数仅仅是器件工作的极限值,不建议器件的工作条件超过此极限值,否则会对器件的可靠性及寿命产生影响,甚至造成永久性损坏。
- 2.PCB板放置CS8508E的地方,需要有散热设计.使得CS8508E底部的散热片和PCB板的散热区域相连,并通过过孔和地相连。

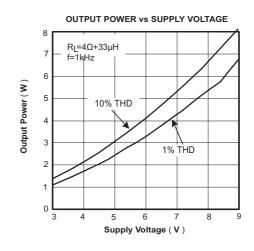
电气参数 T_A = 25°C (除非特殊说明)

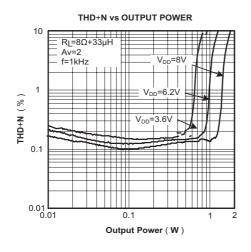
参数	描述	测试条件	最小	典型值	最大	单位
V _{oo}	输出失调电压	VIN=0V, Av=2V/V VDD=2.5V to 8.8V		5	25	mV
PSRR	电源抑制比	V _{DD} =2.5V to 8.8V,217Hz		-80		dB
CMRR	共模抑制比	输入管脚短接, V _{DD} =2.5V to 8.8V		-70		dB
I _{IH}	高电平输入电流	V_{DD} =8.8V, V_{I} = V_{DD}			50	μA
I _{IL}	低电平输入电流	$V_{DD}=8.8V, V_{I}=0 V$		5		μА
	静态电流	Vpd=7.5V,无负载,无滤波		4.6		mA.
I _{DD}		VDD=3.6V,无负载,无滤波		2.5		IIIA
I _{SD}	关断电流			0.1		μА
_		V _{DD} =7.5V		240		mΩ
r _{DS(ON)}	源漏导通电阻	VDD=3.6V		300		111122
	关断状态下输出阻抗	V _(SHUTDOWN) =0.35V		2		ΚΩ
f _(SW)	调制频率	VDD=2.5V to 8.8V		750		Khz
Gain	放大倍数			2× 150kg Rin	Ω	V/V
Rsp	SHUTDOWN 引脚下拉电阻			230		ΚΩ

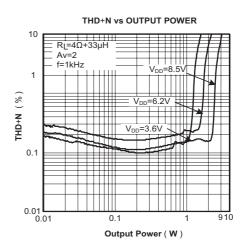

工作特性 $T_{A=25^{\circ}C,Gain=2\,V/V,\,RL=8\,\Omega}$ D类模式 (除非特殊说明)

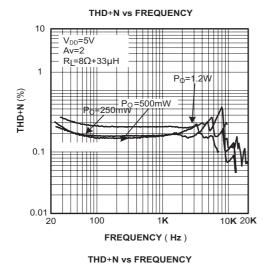

参数	描述	测试条件	最小	典型	最大	单位
		V _{DD} =8.5V,THD=10%,f=1KHz,RL=4Ω		8.50		
		VDD=8.5V,THD=1%, $f=1KHz,RL=4\Omega$		7.30		
		VDD=7.4V,THD=10%,f=1KHz,RL=8Ω		3.50		
		VDD=7.4V,THD=1%, f=1KHz,RL=8Ω		2.85		1
		V _{DD} =7.4V,THD=10%,f=1KHz,RL=4Ω		7.00		İ
Po	输出功率	VDD=7.4V,THD=1%, $f=1KHz,RL=4\Omega$		5.80		W
		VDD=5.0V,THD=10%,f=1KHz,RL=8Ω		1.63		-
		$V_{DD}=5.0V, THD=1\%, f=1KHz, RL=8\Omega$		1.30		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=4Ω		1.70		
		VDD=3.6V,THD=1%, $f=1KHz,RL=4\Omega$		1.20		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=8Ω		0.80]
		V _{DD} =3.6V,THD=1%, f=1KHz,RL=8Ω		0.62		
		VDD=7.4V,Po=1.6W, $f=1KHz,RL=8\Omega$		0.11		
THD+N	总谐波失真+噪声	V _{DD} =4.2V,Po=0.4W, f=1KHz,RL=8Ω		0.16		%
		V _{DD} =3.6V,Po=0.4W, f=1KHz,RL=8Ω		0.15		
η	效率	VDD=5.0V,Po=0.6W, f=1KHz,RL=8Ω		90		%
tsт	启动时间			40		ms

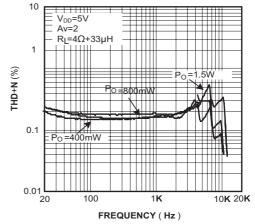

工作特性 $T_A=25^{\circ}C$, Gain = 2 V/V, RL = 8 Ω AB类模式 (除非特殊说明)

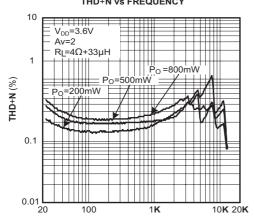

参数	描述	测试条件	最小	典型	最大	单位
		VDD=8.5V,THD=10%,f=1KHz,RL=4Ω		8.00		
		$V_{DD}=8.5V,THD=1\%, f=1KHz,RL=4\Omega$		7.50		
		V _{DD} =7.4V,THD=10%,f=1KHz,RL=8Ω		3.50		
		V _{DD} =7.4V,THD=1%, f=1KHz,RL=8Ω		3.00		
		V _{DD} =7.4V,THD=10%,f=1KHz,RL=4Ω		6.90		
Po	输出功率	V_{DD} =7.4 V , T_{HD} =1%, f =1 K_{Hz} , R_{L} =4 Ω		5.60		W
		V _{DD} =5.0V,THD=10%,f=1KHz,RL=8Ω		1.56		
		$V_{DD}=5.0V, THD=1\%, f=1KHz, RL=8\Omega$		1.00		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=4Ω		1.30		
		VDD=3.6V,THD=1%, $f=1KHz,RL=4\Omega$		1.00		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=8Ω		0.70		
		V _{DD} =3.6V,THD=1%, f=1KHz,RL=8Ω		0.52		
		$V_{DD}=7.4V, Po=1.0W, f=1KHz, RL=8\Omega$		0.11		
THD+N	总谐波失真+噪声	V _{DD} =4.2V,Po=0.4W, f=1KHz,RL=8Ω		0.16		%
		$V_{DD}=3.6V,Po=0.4W, f=1KHz,RL=8\Omega$		0.15		
η	效率	$V_{DD}\text{=}5.0V, Po\text{=}0.6W, \text{f=}1\text{KHz}, RL\text{=}8\Omega$		50		%
tsт	启动时间			40		ms


典型特征曲线 Ta=25°C,Gain = 2 V/V, RL = 8 Ω (D类模式,除非特殊说明)

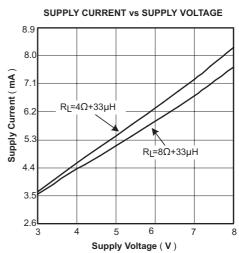


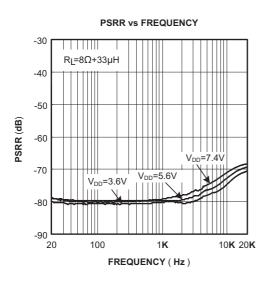


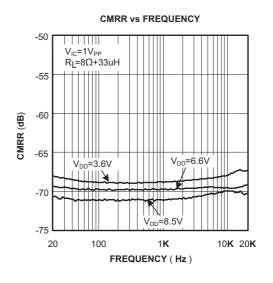




典型特征曲线 T_A=25°C,Gain = 2 V/V, RL = 8 Ω (D类模式,除非特殊说明)

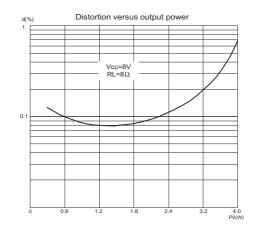

THD+N vs FREQUENCY

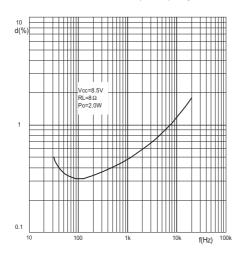



1**K**

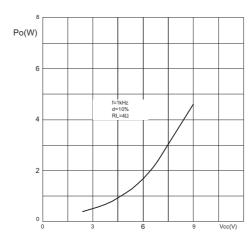
 ${\bf FREQUENCY} \; (\; {\bf Hz} \;)$

10**K** 20**K**

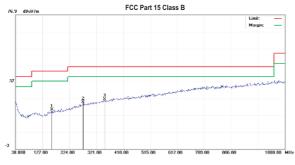




典型特征曲线 TA=25°C,Gain = 2 V/V, RL = 8 Ω (AB类模式,除非特殊说明)



Distortion versus output Frequency



Output power/versus supply voltage

产品特性

CS8508E系列是一款超低EMI,8.0W,单声道,AB类D类可以切换音频功率放大器。在8.5V电源下,能够向 4Ω 负载提供8.0W的输出功率,并具有高达90%的效率。CS8508E D类模式采用专有的AERC((Adaptive Edge Rate Control)技术,在音频全带宽范围内极大地降低了EMI的干扰,对60cm的音频线,在FCC的标准下具有超过20dB的裕量(如下图)。

EMI测试频谱图

CS8508E内置了过流保护,过热保护和欠压保护功能,这些功能保证了芯片在异常的工作条件下关断芯片,有效地保护了芯片不被损坏,当异常条件消除后,CS8508E有自恢复功能可以让芯片重新工作。

效率

输出晶体管的开关工作方式决定了D类模式放大器的高效率。在D类模式下输出晶体管就像是一个电流调整开关,切换过程中消耗的额外功率基本可以忽略不计。输出级相关的功率损耗主要是由MOSFET导通电阻与电源电流产生的IR。CS8508E的效率可达90%。

Pop & Click抑制

CS8508E系列内置专有的时序控制电路。实现全面的Pop & Click抑制,可以有效地消除系统在上电,下点,Wake up和 Shutdown操作时可能会出现的瞬态噪声。

保护电路

CS8508E在应用的过程中,当芯片发生输出管脚和电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,CS8508E自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,CS8508E可以继续正常工作。当电源电压过低时,芯片也将被关断,电源电压恢复后,芯片会再次启动。

SD,ABD引脚设置

CS8508E通过SD,ABD两个管脚的电压控制实现芯片不同状态的设置.SD管脚设置芯片关断和开启功能,ABD管脚设置芯片处于AB和D类的工作模式。其逻辑状态如下表:

工作模式

逻辑电压 管脚	高电平(H)	低电平 (L)
SD	芯片开启	芯片关断
ABD	D类模式 , BOOST模块开启	AB类模式, BOOST模块关断

去耦电容 (Cs)

CS8508E是一款高性能音频放大器,电源端需要加适当的电源供电去耦电容来确保其高效率和最佳的总谐波失真。同时为得到良好的高频瞬态性能,希望电容的ESR值要尽量的小,一般选择典型值为1uF的电容旁路到地。去耦电容在布局上应该尽可能的靠近芯片的VDD放置。把去耦电容放在与CS8508E较近的地方对于提高放大器的效率非常重要。因为器件和电容间的任何电阻或自感都会导致效率的降低。如果希望更好的滤掉低频噪音,则需要根据具体应用添加一个470uF或者更大的去耦电容。

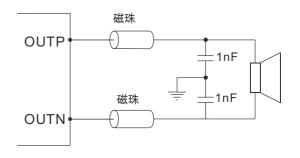
输入电阻(Rin)

通过设定输入电阻可以设定系统的放大倍数,如下式:

$$Gain = {512 \, k\Omega \over Rin} \quad ({V \over V}) ------$$
D类模式
$$Gain = {192 \, k\Omega \over Rin} \quad ({V \over V}) ------AB类模式$$

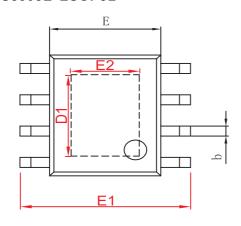
两个输入电阻之间的良好匹配对提升芯片 PSRR,CMRR以及THD等性能都有帮助,因此要求使用 精度为1%的电阻。PCB布局时,电阻应紧靠CS8508E放 置,可以防止噪声从高阻结点的引入。

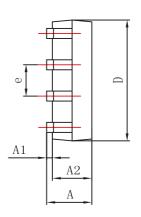
输入电容(Cin)

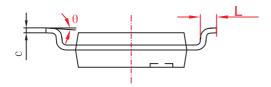

输入电阻和输入电容之间构成了一个高通滤波器,其截止频率如下式:

$$f_{c} = \frac{1}{(2\pi R_{in}C_{in})}$$

输入电容的值非常重要,一般认为它直接影响着电路的低频性能。无线电话中的喇叭对于低频信号通常不能很好的响应,可以在应用中选取比较大的fc以滤除217HZ噪声引入的干扰。电容之间良好的匹配对提升芯片的整体性能和Pop & Click的抑制都有帮助,因此要求选取精度为10%或者更小的电容.


磁珠和电容


CS8508E在没有磁珠和电容的情况下,对于60cm的音频线,仍可满足FCC标准的要求。在输出音频线过长或器件布局靠近EMI敏感设备时,建议使用磁珠,电容。磁珠和电容要尽量靠近CS8508E放置。



封装信息

CS8508E ESOP8L

总	Dimensions In	Millimeters	Dimensions	s In Inches
字符	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.050	0.150	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
D1	3.202	3.402	0.126	0.134
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.270	(BSC)	0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	O	8	0 8	

Notes:

- (1) 所有尺寸都为毫米
- (2) 参考JEDEC MO-187标准