MOC3031M, MOC3032M, MOC3033M, MOC3041M, MOC3042M, MOC3043M
 6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (250/400 Volt Peak)

Features
■ Simplifies logic control of 115 VAC power
■ Zero voltage crossing
■ dv/dt of $2000 \mathrm{~V} / \mu \mathrm{s}$ typical, $1000 \mathrm{~V} / \mu \mathrm{s}$ guaranteed
■ VDE recognized (File \# 94766), ordering option V (e.g., MOC3043VM)

Applications

\square Solenoid/valve controls	\square Lighting controls
\square Static power switches	\square AC motor drives
\square Temperature controls	\square E.M. contactors
\square AC motor starters	\square Solid state relays

Description

The MOC303XM and MOC304XM devices consist of a AIGaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.

They are designed for use with a triac in the interface of logic systems to equipment powered from 115 VAC lines, such as teletypewriters, CRTs, solid-state relays, industrial controls, printers, motors, solenoids and consumer appliances, etc.

Schematic

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters	Symbol	Device	Value	Units
TOTAL DEVICE				
Storage Temperature	$\mathrm{T}_{\text {STG }}$	All	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	T ${ }_{\text {OPR }}$	All	-40 to +85	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$\mathrm{T}_{\text {SOL }}$	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	All	-40 to +100	${ }^{\circ} \mathrm{C}$
Isolation Surge Voltage ${ }^{(1)}$ (peak AC voltage, $60 \mathrm{~Hz}, 1 \mathrm{sec}$ duration)	$\mathrm{V}_{\text {ISO }}$	All	7500	$\operatorname{Vac}(\mathrm{pk})$
Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	All	250	mW
			2.94	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER				
Continuous Forward Current	I_{F}	All	60	mA
Reverse Voltage	V_{R}	All	6	V
Total Power Dissipation $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	P_{D}	All	120	mW
			1.41	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR				
Off-State Output Terminal Voltage	$\mathrm{V}_{\text {DRM }}$	MOC3031M/2M/3M	250	V
		MOC3041M/2M/3M	400	
Peak Repetitive Surge Current (PW = $100 \mu \mathrm{~s}, 120 \mathrm{pps}$)	$\mathrm{I}_{\text {TSM }}$	All	1	A
Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	P_{D}	All	150	mW
		All	1.76	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

Note

1. Isolation surge voltage, $\mathrm{V}_{\text {ISO }}$, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4,5 and 6 are common.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified)
Individual Component Characteristics

Parameters	Test Conditions	Symbol	Device	Min	Typ	Max	Units
EMITTER							
Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$	V_{F}	All		1.25	1.5	V
Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	I_{R}	All		0.01	100	$\mu \mathrm{A}$
DETECTOR							
Peak Blocking Current, Either Direction	Rated $\mathrm{V}_{\text {DRM }}, \mathrm{I}_{\mathrm{F}}=0$ (note 1)	$\mathrm{I}_{\text {DRM1 }}$	All			100	nA
Peak On-State Voltage, Either Direction	$\mathrm{I}_{\text {TM }}=100 \mathrm{~mA}$ peak, $\mathrm{I}_{\mathrm{F}}=0$	$\mathrm{V}_{\text {TM }}$	All		1.8	3	V
Critical Rate of Rise of Off-State Voltage	$\mathrm{I}_{\mathrm{F}}=0$ (Figure 9, note 3)	dv/dt	All	1000			V/ $/ \mathrm{s}$

Transfer Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)

DC Characteristics	Test Conditions	Symbol	Device	Min	Typ	Max	Units
LED Trigger Current	$\begin{aligned} & \text { Main terminal voltage = 3V } \\ & \text { (note 2) } \end{aligned}$	I_{FT}	$\begin{aligned} & \text { MOC3031M/ } \\ & \text { МOC3041M } \end{aligned}$			15	mA
			$\begin{aligned} & \text { MOC3032M/ } \\ & \text { МОС3042M } \end{aligned}$			10	
			$\begin{aligned} & \text { MOC3033M/ } \\ & \text { МОС3043M } \end{aligned}$			5	
Holding Current, Either Direction		I_{H}	All		400		$\mu \mathrm{A}$

Zero Crossing Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)

Characteristics	Test Conditions	Symbol	Device	Min	Typ	Max	Units
Inhibit Voltage	$\mathrm{I}_{\mathrm{F}}=$ rated I_{FT}, MT1-MT2 voltage above which device will not trigger off-state	V_{IH}	All			20	V
Leakage in Inhibited State	$\mathrm{I}_{\mathrm{F}}=$ rated I_{F}, rated $\mathrm{V}_{\text {DRM }}$, off-state	$\mathrm{I}_{\text {DRM } 2}$	All			500	$\mu \mathrm{~A}$

Note

1. Test voltage must be applied within dv/dt rating
2. All devices are guaranteed to trigger at an I_{F} value less than or equal to max $I_{F T}$. Therefore, recommended operating I_{F} lies between max $I_{F T}$ (15 mA for MOC3031M \& MOC3041M, 10 mA for MOC3032M \& MOC3042M, 5 mA for MOC3033M \& MOC3043M) and absolute max $\mathrm{I}_{\mathrm{F}}(60 \mathrm{~mA}$).
3. This is static $\mathrm{dv} / \mathrm{dt}$. See Figure 9 for test circuit. Commutating $\mathrm{dv} / \mathrm{dt}$ is a function of the load-driving thyristor(s) only.

4. The mercury wetted relay provides a high speed repeated pulse

Typical circuit (Fig 12, 13) for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.
$R_{\text {in }}$ is calculated so that I_{F} is equal to the rated $I_{F T}$ of the part, 5 mA for the MOC3033M and MOC3043M, 10 mA for the MOC3032M and MOC3042M, or 15 mA for the MOC3031M and MOC3041M. The 39 ohm resistor and $0.01 \mu \mathrm{~F}$ capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load used.

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 1 k ohm.

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330 ohm.
Note: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

Package Dimensions (Surface Mount)

Package Dimensions (0.4"Lead Spacing)

NOTE
All dimensions are in inches (millimeters)

Ordering Information

Option	Order Entry Identifier	Description
S	S	Surface Mount Lead Bend
SR2	SR2	Surface Mount; Tape and reel
T	T	$0.4 "$ Lead Spacing
V	V	VDE 0884
TV	TV	VDE 0884, 0.4" Lead Spacing
SV	SV	VDE 0884, Surface Mount
SR2V	SR2V	VDE 0884, Surface Mount, Tape \& Reel

NOTE

All dimensions are in inches (millimeters)

Marking Information

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	One digit year code, e.g., '3'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

*Note - Parts that do not have the 'V' option (see definition 3 above) that are marked with date code ' 325 ' or earlier are marked in portrait format.

Reflow Profile (White Package, -M Suffix)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FAST ${ }^{\circledR}$	ISOPLANAR ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8
ActiveArray ${ }^{\text {™ }}$	FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {tM }}$	PowerTrench ${ }^{\circledR}$	SyncFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	FPS ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyLogic ${ }^{\circledR}$
Build it Now ${ }^{\text {TM }}$	FRFET ${ }^{\text {m }}$	MicroFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TINYOPTO ${ }^{\text {™ }}$
CoolFET ${ }^{\text {tM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {™ }}$	MICROWIRE ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {™ }}$	MSX ${ }^{\text {M }}$	RapidConfigure ${ }^{\text {TM }}$	UltraFET ${ }^{\text {® }}$
EcoSPARK ${ }^{\text {TM }}$	$1^{2} \mathrm{C}^{\text {TM }}$	MSXPro ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	$i-L O^{\text {TM }}$	OCX ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {™ }}$	VCX ${ }^{\text {TM }}$
EnSigna ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	OCXPro ${ }^{\text {¹m }}$	SILENT SWITCHER ${ }^{\circledR}$	Wire ${ }^{\text {TM }}$
FACT ${ }^{\text {m }}$	IntelliMAX ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SMART START ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	
		PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	
Across the board. Around the world. ${ }^{\text {TM }}$		POP ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	
The Power Franchise ${ }^{\circledR}$		Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
Programmable Active Droop		PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHTTO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEYANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

